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a b s t r a c t

Large distortion may be introduced by non-orthogonal finger pressure and 3D–2D mapping during the

process of fingerprint capturing. Furthermore, large variations in resolution and geometric distortion

may exist among the fingerprint images acquired from different types of sensors. This distortion greatly

challenges the traditional minutiae-based fingerprint matching algorithms. In this paper, we propose a

novel ant colony optimization algorithm to establish minutiae correspondences in large-distorted

fingerprints. First, minutiae similarity is measured by local features, and an assignment graph is

constructed by local search. Then, the minutiae correspondences are established by a pseudo-greedy

rule and local propagation, and the pheromone matrix is updated by the local and global update rules.

Finally, the minutiae correspondences that maximize the matching score are selected as the matching

result. To compensate resolution difference of fingerprint images captured from disparate sensors, a

common resolution method is adopted. The proposed method is tested on FVC2004 DB1 and a

FINGERPASS cross-matching database established by our lab. The experimental results demonstrate

that the proposed algorithm can effectively improve the performance of large-distorted fingerprint

matching, especially for those fingerprint images acquired from different modes of acquisition.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fingerprints are graphical patterns of ridges and valleys on the
skin surface of fingertips [25]. Due to its uniqueness, a fingerprint
is considered to be one of the most reliable biometrics for
personal verification. Widely known applications include the
US-VIST program instituted by the Department of Homeland
Security (DHS) and the IAFIS service developed by the Federal
Bureau of Investigation (FBI) [30].

Fingerprint recognition has been studied for many years and
numerous algorithms have been proposed to improve the perfor-
mance of the automatic fingerprint identification system (AFIS).
Among them, minutiae-based matching algorithms are the most
popular approaches since they are widely believed that minutiae
are the most discriminating and reliable features. However, there
are still some challenging problems in minutiae-based fingerprint
matching algorithms. Firstly, fingerprints may possess a large
non-linear distortion caused by non-orthogonal finger pressure
and the 3D to 2D mapping process [4]. Fig. 1 shows a pair of
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fingerprints with large distortion from FVC2004 DB1. While the
corresponding minutiae in the rectangle region are approximately
overlapped, the maximal distance between corresponding minu-
tiae in the elliptical region is more than 100 pixels [5]. Secondly,
various types of fingerprint sensors in the biometric market
introduce large variations into fingerprint resolution, distortion
patterns and noise. Two fingerprints captured from disparate
sensors are illustrated in Fig. 2, in which Fig. 2(a) is captured
from a sweep mode sensor, while Fig. 2(b) is captured from a
press mode sensor. Finally, minutia of a query fingerprint may fall
within the tolerance area of more than one minutiae of the
template fingerprint as shown in Fig. 3. Therefore, it is difficult
to find the optimal pair since one minutia can match with at most
one minutia in the minutiae pairing process. In addition, the effect
between matching score computation and minutiae correspon-
dences is unidirectional. There is no feedback to guide minutiae
correspondences establishment. Due to these confounding factors,
minutiae-based fingerprint matching is a complex combinatorial
optimization problem. It is a crucial and challenging task to design a
powerful matching algorithm for improving the performance of
large-distorted fingerprint matching.

One way of tackling the above problems simultaneously is to use
ant colony optimization (ACO), which is a paradigm for designing
metaheuristic algorithms for combinatorial optimization problems.
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Fig. 1. An example of large distortion from FVC2004 DB1 [5]. (a) 102_3.tif;

(b) 102_5.tif; and (c) the image is fingerprint 102_5 (after registration) added to

102_3. In the rectangular region, the corresponding minutiae are approximately

overlapped. While in the elliptical region, the maximal vertical difference of

corresponding minutiae is greater than 100 pixels.

Fig. 2. Fingerprint images captured from different types of sensors. (a) Fingerprint

image from the sweep sensor and (b) fingerprint image from the press sensor.

Fig. 3. Ambiguity of minutiae correspondences. r is the reference point, m1
T and m2

T

are minutiae from the template fingerprint while mI is a minutia from the input

fingerprint.
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The first ACO algorithm was developed by Colorni et al. [8], who
successfully applied it to the traveling salesman problem (TSP)
based on the path-finding abilities of real ants [11,10]. It simulates
the behavior of ant colonies in nature as they forage for food and
find the most efficient routes from their nests to food sources. While
walking, ants deposit pheromones on the ground and follow the
pheromones previously deposited by other ants. The essential trait
of ACO algorithms is the combination of a priori information
regarding the structure of a promising solution with a posteriori
information regarding the structure of previously obtained good
solutions [10].

In this paper, we propose a novel ACO algorithm for large-
distorted fingerprint matching. Minutiae similarities are
measured by their orientation descriptor and local minutiae
structure, and are viewed as heuristic values in ACO. Local
minutiae matching is utilized to construct an assignment graph
from which the artificial ants can find all minutiae correspon-
dences. Pseudo-random proportional rule is adopted to select
minutiae correspondences, and a new state transition rule is
proposed for local propagation. For the fingerprint images cap-
tured by disparate sensors, a common resolution method is
adopted to compensate for different resolutions. Experiments on
FVC2004 DB1 and the FINGERPASS cross-matching database
demonstrate that the proposed algorithm can effectively improve
the performance of large-distorted fingerprint matching, espe-
cially for those fingerprint images acquired from different modes
of acquisition.

The rest of the paper is organized as follows: Section 2
provides a review of previous attempts to tackle distortion in
fingerprint images. Section 3 provides feature extraction and
fingerprint representation. Section 4 describes the ACO-based
minutiae pairing algorithm. The experimental results are reported
in Section 5 and conclusions are drawn in Section 6.
2. Related work

Various minutiae-based fingerprint matching algorithms have
been proposed to deal with distortion [25]. Due to translation,
rotation and non-linear distortion, the correspondences between
minutiae are very ambiguous. Researchers tried to attach local
features to reduce the ambiguity. There are mainly three kinds of
local features used in fingerprint verification. The ridge informa-
tion associated with minutiae is the first kind of local feature
introduced to select the reference minutiae pair [17]. Minor
modifications of this strategy have been proposed by other
researchers [15,21]. The second kind of local features is the local
minutiae structural feature. Jiang and Yau [20], and Jea and
Govindaraju [19] utilized k closest neighboring minutiae points
to generate a fixed-length feature for each minutia and the
similarities between minutiae were based on these features. Chen
et al. [4] and Ratha et al. [27] adopted similar strategies by
defining a feature vector which characterized the rotation and
translation invariant relationship between a minutia and its
neighbors circled within a radius. The third feature is the
orientation features around minutia. The approaches presented
in Refs. [33–35] used the orientation features for the minutiae
similarity measure.

In the minutiae correspondences establishment process, clas-
sical methods aligned two minutiae sets by choosing a reference
minutiae pair (one from the input fingerprint and the other from
the template fingerprint) [17], and only translation and rotation
were considered. In these methods, the corresponding minutiae
located far away from the reference minutiae may have a larger
position and direction difference than those adjacent to the
reference minutiae. In order to tolerate distortion, Jain et al.
[17] presented a fixed-size bounding box to match minutiae.
Luo et al. [24] improved this algorithm by applying a changeable
bounding box during the matching process which made it more
robust to non-linear distortion. An alternative approach is to find
a transformation to globally align the two minutiae sets. Zhu et al.
[36] claimed that using multiple pairs of reference minutiae to
estimate transformation gave better results. Tan and Bhanu [32]
proposed a fingerprint matching approach based on genetic
algorithm (GA), which tried to find the optimal transformation
parameters (including scale, translation and rotation) between
the two fingerprint images. Sheng et al. [31] developed a memetic
fingerprint matching algorithm by introducing an efficient match-
ing operation to produce an initial population and combining the
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use of the global search functionality of GA with a local improve-
ment operator to search for the optimal or near optimal global
alignment. During this process, minutiae alignment intends to
find the geometry transform of translation and rotation. However,
both of these algorithms have not considered non-linear distor-
tion. Kovacs-Vajna [22] proposed a method based on triangular
matching and utilized dynamic time warping (DTW) to validate
these minutiae correspondences founded by triangular matching.
However, without DTW for further verification, the results are not
acceptable [32]. Chikkerur et al. [7] developed a dual traversal
algorithm called coupled BFS for consolidating all local neighbor-
hood matches. In this method, only local neighborhoods were
considered at each stage and a dynamic programming based
optimization approach was employed to obtain the minutiae
correspondences.

There are different attempts to deal with non-linear distortion
in fingerprint images. Some of them focus on detecting distortion
in the fingerprint capture process. Ratha and Bolle [26] proposed
to measure the forces and torques on the scanner directly, while
Dorai et al. [9] proposed to detect and estimate distortion
occurring in fingerprint videos. However, both of these methods
cannot deal with the captured fingerprint images. Bazen and
Gerez [2] employed the thin-plate spline (TPS) model to describe
non-linear distortion between two fingerprints. However, this
method is highly dependent on the initialization of minutiae
pairs, which are usually obtained by using rigid transformation.
Ross et al. [28] proposed an average deformation model to cope
with non-linear distortion. He et al. [14] proposed a global
comprehensive similarity-based fingerprint matching algorithm,
in which minutia-simplex, including a pair of minutiae as well as
their associated textures, were employed to achieve fingerprint
matching. Chen et al. [5] proposed a fuzzy feature based on a local
triangle feature set to match the deformed fingerprint images.

Due to the development in the fingerprint market and finger-
print sensing technology, there are many fingerprint sensors on
the market. Different sensor modes produce fingerprint images
with different characteristics, which greatly challenge traditional
matching algorithms. However, only a few works focused on the
variations of fingerprints in cross-matching. Ross and Jain [29]
discussed the problem of biometric sensor interoperability and
presented a case study involving two different fingerprint sensors.
Results confirmed that when the images being matched origi-
nated from two different sensors, then the performance of the
matcher drastically deteriorated. Jang et al. [18] improved the
interoperability of fingerprint recognition using resolution com-
pensation based on sensor evaluation. However, it ignored differ-
ent distortion patterns resulting from different capture modes
and was only available for the press sensors. Ross and Nadgir [30]
proposed a non-linear calibration scheme based on the TPS model
to register a pair of fingerprint sensors. However, it is unable to
compensate for the variations by an average model. The finger-
print distortion is affected by various factors (such as the press
direction of the finger of the press sensor and moving speed of the
sweep sensor).
Fig. 4. An overview of the proposed ACO algorithm for minutiae matching.
3. Feature extraction and representation

For a gray-scale input fingerprint image captured at a resolu-
tion of d DPI (dots-per-inch), the orientation field is calculated by
the approach proposed by Bazen and Gerez [1], the method
described by Hong et al. [16] is used to enhance the image, and
the thinned ridge map is then obtained. The thinned ridge map
is post-processed by using Luo’s method [23]. Local features
are detected on the thinned ridge map and the orientation field.
The set of local features is denoted as M¼ fðmi,fiÞg

N
i ¼ 1, where
N denotes the number of detected minutiae, mi ¼ ðxi,yi,yi,riÞ

includes x,y coordinates, direction and reliability of the ith
minutiae, respectively, fi denotes the transform-invariant feature
vector corresponding to the ith minutiae, which will be discussed
in the next section. Minutiae coordinates and directions are
detected by Hong’s method [16]. It is difficult to reliably extract
minutiae from the input fingerprint, especially from low-quality
fingerprints. The performance of the matching algorithm
highly depends on the quality of the fingerprint image and the
reliability of minutiae. For each minutiae mi, the method pro-
posed by Feng [12] is used to classify it as reliable or unreliable. In
this method, all the ridges associated with mi or surrounding mi

are examined. For the configurations of these ridges of termina-
tion and bifurcation, we refer the authors to Ref. [12]. If the
lengths of the ridges are all longer than the threshold, then mi is
regarded as a reliable one (ri¼1), otherwise it is an unreliable one
(ri¼0). Since various resolution sensors are involved, we set the
threshold as 12� d/500 pixels in this work.

The segmentation of the fingerprint foreground plays an
important role not only in the feature extraction but also in the
minutiae similarity calculation. In this paper, the foreground of
the fingerprint image is obtained by the approach proposed by
Chen et al. [6]. We use its convex hull (C ¼ fðxi,yiÞg

Nc

i ¼ 1, where Nc is
the number of vertices of the convex hull, (xi,yi) are the x and y

coordinates of the ith vertex) to approach the fingerprint fore-
ground. Then, the features of a fingerprint can be represented as
F¼{M,C,d}. For the fingerprint images captured from different
resolutions, there are two overall resolution compensation
schemes in the image level as well as the template level using a
common resolution method and relative resolution method [18].
In this paper, we focus on minutiae correspondences establish-
ment and then we adopt a common resolution method for
simplicity. For each coordinate (x,y) from the minutiae set or
convex hull, its transformed version (xt,yt) is calculated as follows:

xt ¼ d0=d� x ð1Þ

yt ¼ d0=d� y ð2Þ

where d0 is the common resolution. Without introducing ambi-
guity, we use F¼{M,C} to denote the transformed features.
4. Minutiae matching by ACO

In this section we discuss the proposed minutiae matching
algorithm in detail. The overview of the ACO-based minutiae
matching algorithm is given in Fig. 4.
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4.1. Problem formulation

Suppose that there are NI minutiae in the input fingerprint
feature set FI

¼(MI,CI) and there are NT minutiae in the template
fingerprint feature set FT

¼(MT,CT). By representing the minutiae
as point patterns, minutiae matching can be viewed as a minutiae
point pattern matching problem. Since the relative transforma-
tion between two fingerprints is unknown in advance, the
correspondences between minutiae are very ambiguous and each
minutia in the input fingerprint can be matched to any minutiae
of the template fingerprint [12] and vice versa. Therefore, the
matching functionM can be viewed as a binary function over the
product set of MI and MT, which is denoted by,

M : MI �MT�!f0,1g ð3Þ

where � denotes the direct product of the two sets and the
function value 1 means matching and 0 is mismatching. Defined
on the space of a Cartesian product set, the binary function can be
regarded as a binary assignment matrix of NI by NT, i.e.

A¼

a11 a12 . . . a1NT

a21 a22 . . . a2NT

^ ^ ^ ^

aNI1 aNI2 . . . aNINT

2
66664

3
77775

, aijAf0,1g ð4Þ

where the elements aij correspond to the assignment of mI
i to mT

j .
In the minutiae pairing process, one minutia can match with at
most one minutia. Therefore, assignment A should be subject to

the injective constraint, that is
PNI

i ¼ 1 aijr1 and
PNT

j ¼ 1 aijr1. The

minutiae matching process can then be defined as the problem of
finding the best correspondences between the input minutiae set
and the template minutiae set, which optimizes a given objective
function.

4.2. Minutiae similarity

Local features of a minutia describe the characteristics of the
minutia in its neighborhood. These features indicate the prob-
ability that two minutiae should be matched and reduce the
ambiguity between minutiae. In this paper, we combine local
orientation and local minutiae structure to measure the similarity
between minutiae [3].

The local orientation-based descriptor proposed by Tico and
Kuosmanen [33] has been used to find potential matches. In this
method, the descriptor consists of the orientation distances
between the minutia and the sampling points around the minutia
in a circular pattern. The circular pattern consists of L concentric
circles of radii rlð1r lrLÞ and Kl sampling points are equally
sampled on the lth circle. They reported that the configuration
((r0¼27, K0¼10), (r1¼45, K1¼16), (r2¼63, K2¼22) and (r3¼81,
K3¼28)) obtained the best performance on FVC2000 DB1 and
DB2, in which fingerprint images were captured at a resolution of
500DPI. In this paper, we take cross-matching into account.
Therefore, we modify the sampling radii using a linear function
with respect to the fingerprint image resolution d, known as:

r0l ¼ rl � d=500 ð5Þ

Suppose that mp
I is a minutia in the input fingerprint, mq

T is a
minutia in the template fingerprint, and f I

p ¼ fak,lg and f T
q ¼ fbk,lg

are their corresponding transform-invariant feature vectors. The
orientation similarity between these two feature vectors is
calculated as

OSpq ¼ 1=76
XL

l ¼ 1

XKl

k ¼ 1

sðL1ðak,l,bk,lÞÞ ð6Þ
where L1ðy1,y2Þ is the orientation distance between y1 and y2,
and s(x) denotes a similarity value with respect to the orientation
difference x as follows:

sðxÞ ¼ e�x=ðp=16Þ ð7Þ

The method proposed in our previous work is adopted to measure
the local minutiae structural similarity [3]. The calculation of local
minutiae structural similarity between mp

I and mq
T has two stages.

In stage (1), minutia mp
I and its neighbors are mapped on the

coordinate system of mq
T. Let NðmI

p,rÞ ¼ fmI
pi
g

np

i ¼ 1 denote the set of

the neighboring minutiae circled mp
I within r radius in input

fingerprint, NðmT
q ,rþDrÞ ¼ fmT

qj
g

nq

j ¼ 1 denote the set of the neigh-

boring minutiae circle mq
T within rþDr radius in the template

fingerprint and Tr represent the corresponding rigid transforma-

tion from mp
I to mq

T. Each minutia mI
pi

in NðmI
p,rÞ is mapped to m0Ipi

using Tr. Then, the contribution of mI
pi

with respect to minutia mp
I

is computed as

Cpi
¼ max

mT
qj
ANðmT

q ,rþDrÞ
f ðDðm0Ipi

,mT
qj
Þ,d1,d2Þ � f ðjL2ðy

0I
pi

,yT
qj
Þj,y1,y2Þ ð8Þ

where d1 and d2 are two distance thresholds, y1 and y2 are two
direction distance thresholds, and function f, D and L2 are defined as,

f ðx,th1,th2Þ ¼

1 if xrth1

0 if x4th2

th2�x

th2�th1
otherwise

8>>><
>>>:

ð9Þ

Dðmp,mqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxI

p�xT
qÞ

2
þðyI

p�yT
j Þ

2
q

ð10Þ

L2ðy
I
p,yT

q Þ ¼

yI
p�y

T
q if jyI

p�y
T
q jrp

yI
p�y

T
q�2p if ðyI

p�y
T
qÞ4p

yI
p�y

T
qþ2p otherwise

8>>><
>>>:

ð11Þ

If Cpi
is larger than 0, mI

pi
is regarded as a local matched minutia.

In stage (2), we define two other neighboring minutiae sets:
NðmT

q ,rÞ and NðmI
p,rþDrÞ. They are similar as in stage 1. We use

the same symbol Tr to represent the relative rigid transformation
from mq

T to mp
I . Each minutia mqj

ANðmq,rÞ is mapped to m0Tqj
using

Tr. The contribution of mqj
to the minutia mq is calculated as

follows:

Cqj
¼ max

mI
pi
ANðmI

p ,rþDrÞ
f ðDðmI

pi
,m0Tqj
Þ,d1,d2Þ � f ðjL2ðy

I
pi

,y0Tqj
Þj,y1,y2Þ ð12Þ

The structural similarity between mp
I and mq

T is measured using
the following formula:

MSpq ¼

1þ
P

mI
pi
ANðmI

p ,rÞCpi

Mpþbias
�

1þ
P

mT
qj
ANðmT

q ,rÞCqj

Mqþbias
, ð13Þ

where Mp and Mq represent the number of minutiae that should
be matched [12] in N(mp,r) and N(mq,r), respectively, and bias is a
parameter (bias¼ 2 in our experiments). Minutia m is regarded as
a minutia that should be matched if m is a local matched minutia
or m0 is a reliable minutia and m0 is located inside the convex hull
of the other fingerprint.

Two similarity functions are combined to measure the simi-
larity between the minutiae pair by the product rule

spq ¼OSpq �MSpq ð14Þ

Let s¼ fspqg
NI ,NT

p ¼ 1,q ¼ 1 denote the set of similarity degrees between
two minutiae sets. However, a minutia may exhibit a large
similarity degree with more than one minutia. In order to identify
the most distinguishable pairs of corresponding minutiae, the
similarity degree set s is normalized by the method proposed by
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Feng [12] as

nspq ¼
spq � ðNTþNI�1ÞPNI

k ¼ 1 skqþ
PNT

k ¼ 1 spk�spq

ð15Þ

4.3. Objective function

Objective function assigns an objective value to each feasible
solution, which indicates the degree of suitability of the solution
and guides the behavior of the ants. In this work, we use the
matching score function as the objective function. Then, the
minutiae matching problem can be viewed as a constraint
maximization problem, and the goal is to find a globally optimal
feasible solution An, that is, a maximum feasible solution for this
maximization problem. In this paper, we adopt the following
formula as the objective function to measure the matching status:

score¼
2
PNI ,NT

i ¼ 1,j ¼ 1 aijsij

CNI
þCNT

1�exp �
XNI ,NT

i ¼ 1,j ¼ 1

aij=s

0
@

1
A

0
@

1
A

¼
2
Pn

k ¼ 1 sikjk

CNI
þCNT

ð1�expð�n=sÞÞ ð16Þ

where n denotes the number of matched minutiae, fðik,jkÞg
n
k ¼ 1

denotes the matched minutiae pair set, CNI and CNT denote the
number of minutiae that should be matched for the input
fingerprint and the template fingerprint, respectively, and s is a
control parameter. The average rotation and translation para-
meters between two fingerprint images are estimated by the
matched minutiae pairs. It is then easy to obtain the values of CNI

and CNT.

4.4. Assignment graph construction

When applying the ACO metaheuristic strategy to find the
correspondences between minutiae, the most important step is to
translate the minutiae matching problem into a graph from which
the artificial ants can find solutions. An assignment graph
Ga
¼(V,E) is first constructed (totally NI

�NT vertices (V ¼

fvijg
NI ,NT

i ¼ 1,j ¼ 1) are constructed in all). Each vertex in V corresponds
to an assignment. For example, vij corresponds to an assignment
of mi

I to mj
T. To reduce the search space and computational

complexity, a local matching process is proposed to construct
the connection among the graph vertexes. A directed edge (eab)
exists from vertex a¼ vi0 j0

to vertex b¼ vi1 j1
if these two assign-

ments satisfy the following three conditions:
(1)
 mI
i1

is a neighbor of mI
i0

(mI
i1
ANðmI

i0
,rÞ);
(2)
 mT
j1

is a neighbor of mT
j0

(mT
j1
ANðmT

j0
,rÞ);
(3)
 mI
i1

and mT
j1

are matchable under the coordinate system of mI
i0

and mT
j0

(transform mI
i1

to m0Ii1 using the rigid transformation from

mI
i0

to mT
j0

and f ðDðm0Ii1 ,m0Tj1
Þ,d1,d2Þ � f ðL2ðm

0I
i1

,mT
j1
Þ,y1,y2Þ40).
Fig. 5. An overview of the solution construction algorithm.
Pheromone trails and heuristic values determine the prob-
ability distribution of the state transition, a key procedure in
solution construction. In traditional approaches, each edge is
initialized with a pheromone trail value and a heuristic value
[10], which will lead to two arrays with a size of NI

�NI
�NT
�NT.

The computational cost is very huge. In this paper, we aim to seek
the optimal correspondences between the input minutiae set and
the template minutiae set. Thus, each vertex such as a¼vij is
associated with a pheromone trail ta and a heuristic value Za. In
the initialization, ta is initialized with a prefixed value t0, and Za

is set as the normalized minutiae similarity (nsij) between the ith
minutia in the input fingerprint and the jth minutia in the
template fingerprint.

4.5. Solution construction

In the proposed ACO-based minutiae matching algorithm, an
artificial ant stands at a vertex and successively selects neighbor-
ing vertices to visit until no more vertices can be visited, because
positions and directions of minutiae in a local region are less
affected by non-linear distortion. In order to select an initial pair
to start the solution construction conveniently, a virtual vertex v0

is added to the assignment graph Ga. The vertices with the largest
K heuristic value are inserted into the adjacency list of the virtual
vertex. All of the ants start at the virtual vertex. The overview of
the solution construction algorithm is given in Fig. 5. At the
beginning of each iteration, the solution for ant k (Sk) is set as
empty. For ant k positioned on vertex a, we first construct a set of
candidate vertices AkðaÞ which are allowed to be visited by ant k.
A vertex v¼ vij is deemed as vAAkðaÞ if it satisfies the following
two conditions:
1.
 v has not been visited by ant k in this iteration:

2.
 There does not exist a vertex in Sk associated with the ith

minutia in the input fingerprint and the jth minutia in the
template fingerprint.

The state transition rule is as follows: ant k positioned at
vertex a chooses vertex b to visit by applying the rule given in
Eq. (17):

b¼
arg max

vAAkðaÞ
f½tv� � ½Zv�

bg if qrq0

B otherwise

8<
: ð17Þ

where b is a parameter which determines the relative importance
of the pheromone trail vs. heuristics (b40), q is a random
number uniformly distributed in [0,1], q0 is a parameter
(0rq0r1), which determines the relative importance of exploi-
tation vs. exploration [10]. B is a random variable selected
according to the probability distribution give in Eq. (18). If
qrq0 then the best vertex is chosen (exploitation). Otherwise,
next vertex is selected according to the probabilistic distribution



Table 1
Characteristics of the FINGERPASS cross-matching database.

Capture sensor Capture mode Image size DPI

URU 4000B Optical press 500n550 700

UPEK TCRU2C Capacitive press 208n288 508

Authentec AES2501 Sweep Unfixed 500

Fig. 6. Fingerprint samples of the same user of the FINGERPASS cross-matching

database. (a) URU4000B; (b) UPEK TCRU2C; and (c) AES2501.
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(biased exploration):

pkða,vÞ ¼

f½tv� � ½Zv�
bgP

uAAkðaÞ
f½tu� � ½Zu�

bg
if vAAkðaÞ

0 otherwise

8><
>:

ð18Þ

In this way, we favor the choice of vertices which have larger
minutiae similarities and a great amount of pheromones.

For a selected vertex (e.g. b¼ vi1 j1 ), an additional procedure is
done to check its compatibility with respect to the selected
vertices in Sk. If there exists a vertex c¼ vi2j2

ASk that satisfies
mI

i1
ANðmI

i2
,rÞ and mT

j1
ANðmT

j2
,rÞ, but b is not in the adjacency list

of c, then we consider that b does not satisfy the compatibility
condition and b is removed from AkðaÞ. Otherwise, ðmI

i1
,mT

j1
Þ is

regarded as a matched minutiae pair and vertex b is appended to
Sk. All of the vertices that are associated with the i1th minutia in FI

and the j1th minutia in FT are removed from AkðaÞ. Therefore, the
injectivity constraint and the compatibility among matched
minutiae are satisfied simultaneously in this seeking process. In
the case that there are more than one connected components of
the assignment graph, this procedure is repeated until all con-
nected components are considered. Finally, all minutiae corre-
spondences found by the same ant are combined as a solution to
calculate the objection function value.

4.6. Pheromone trail updating

The proposed algorithm has two kinds of pheromone trail
updating rules, namely the local pheromone updating rule and
the global pheromone updating rule [8]. The local pheromone
updating rule is intended to avoid that a very strong edge being
selected by all the ants. It is applied when an ant has constructed
a solution. The pheromone on the vertex v chosen by the ants is
updated based on the following rule:

tv ¼ ð1�rÞ � tvþr � t0 ð19Þ

where 0oro1 is a local pheromone decay parameter, and t0 is
the initial pheromone.

On the other hand, the global updating rule intensifies the
search in the neighborhood of the best solution. In this rule, only
the best solution is used to globally modify the pheromone trail.
Global pheromone trail updating is performed according to the
following rule:

tv ¼ ð1�aÞ � tvþa � scorebest ð20Þ

where 0oao1 is a global pheromone decay parameter, scorebest

is the largest score of the minutiae correspondences generated by
ants since the beginning of the algorithm, and v is a vertex of the
corresponding solution. Since at most min(NI,NT) pairs of minutiae
are established by an ant, there are at most min(NI,NT) vertices
needed to be updated in either local pheromone trail updating or
global pheromone trail updating.

4.7. Termination conditions

Termination conditions decide the matching time and possibly
how good the solution is. The termination conditions we used are:
(1) Terminate ACO if the matching score is greater than the
threshold, then it is regarded as a genuine match and it is
unnecessary to continue the iteration; (2) Terminate ACO if the
number of iteration exceeds a prefixed threshold.

5. Experimental results

In this section, we conduct a series of experiments on
FVC2004DB1 and FINGERPASS cross-matching database to evalu-
ate the performance of the ACO-based minutiae matching
algorithm. We first illustrate the database and protocol used
in the performance evaluation and then present the matching
results.

5.1. Databases and protocol

There are two kinds of databases used in the experiments. The
first database is FVC2004 DB1 which contains 800 fingerprint
images (100 different fingers, eight images for each finger). The
fingerprint images of FVC2004 DB1 [13] were acquired through
the optical sensor ‘‘CrossMatch V300’’. The size of the image is
640�480 pixels with a resolution of 500 DPI. In this database, the
distortion between some fingerprints from the same finger is
obvious. Fig. 1 has exemplified this condition. The second data-
base is the FINGERPASS cross-matching database established by
our laboratory, which can be downloaded from http://www.
fingerpass.net. In this paper, we selected three different sub-
databases, which were captured from URU4000B optical press
sensor, UPEK TCRU2C capacitive press sensor and Authentec
AES2501 sweep sensor, respectively, to conduct our evaluation.
From now on, these sub-databases will be, respectively, referred
to as URU, UPEK and AES. Table 1 summarizes the characteristics
of each sensor and Fig. 6 shows some samples from this database.
In each sub-database, there are 720�12 impressions captured
from 720 fingers (12 impressions per finger).

It is difficult to evaluate the accuracy of minutiae correspon-
dences derived from the proposed algorithm and other algo-
rithms. The protocol proposed in the Fingerprint Verification
Competition (FVC) is adopted to evaluate the overall performance
of the proposed algorithm. In regular matching, each sample is
matched against the remaining samples of the same finger for
genuine test and the first sample of each finger is matched against

http://www.fingerpass.net
http://www.fingerpass.net
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the first sample of the remaining fingers for imposter test. Hence,
there are 2800 (100�C8

2) genuine tests and 4950 (C100
2 ) imposter

tests for FVC2004 DB1, 47,520 (720�C12
2 ) genuine tests and

258,840 (C720
2 ) imposter tests for each sub-database of the

FINGERPASS database. In cross-matching, the comparisons are
conducted on two different sub-databases (i.e. database A and
database B). Each sample in A is matched against all the samples
of the same finger in B to compute the genuine test and the first
sample of each finger in A is matched against the first sample of
the remaining fingers in B to compute the imposter test. There-
fore, there are 103,680 (720�12�12) genuine tests and 258,840
(C720

2 ) imposter tests.

5.2. Overall performance of ACO

To validate the performance of our proposed algorithm (ACO),
we have implemented two related algorithms (Algorithm Rigid
and Algorithm CBFS) for comparison. Algorithm Rigid is based on
the greedy matching approach proposed by Feng [12]. The
similarity degree set s is first normalized and sorted in decreasing
order. The top K minutiae pairs are used as the reference pair
Table 2
Results of different algorithms over FVC2004 DB1.

Algorithm EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)

Rigid 3.20 5.36 11.39 18.50

CBFS 3.66 6.25 10.79 17.21

ACO 2.79 4.68 8.54 17.12

P101 2.72 3.86 9.25 13.43

P097 3.38 5.54 9.75 12.93

Fig. 7. Minutiae correspondences obtained by ACO. Red circles denote genuine

minutiae correspondences while blue squares denote false minutiae correspon-

dences. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 8. Comparison of minutiae correspondences obtained by rigid registration a

correspondences obtained by ACO. Red circles denote genuine minutiae corresponden

of the references to color in this figure legend, the reader is referred to the web versio
candidates. For each of them, the following steps are adopted to
calculate the matching score: (1) Two fingerprints are aligned
using the relative translation and rotation between the reference
pair; (2) the greedy matching algorithm proposed by Feng [12] is
used to establish the correspondences between two minutiae
sets; and (3) the score of this attempt is then calculated. The
maximal score of these attempts is selected as the matching
score. Algorithm CBFS is based on a dual graph traversal algo-
rithm proposed by Chikkerur [7] for establishing minutiae corre-
spondences. In their method, a local structure called K-plet was
used to represent the fingerprint. The K-plet consisted of a central
minutia and K other minutiae chosen from its local neighborhood.
The matching algorithm was based on matching a local neighbor-
hood and propagating the math to the K-plet of all of the minutiae
in this neighborhood successively. Algorithm CBFS is modified
from the publicly available code kindly provided by Chikkerur [7]
by utilizing the same local minutiae neighbors with Algorithm
ACO for local minutiae matching rather than K-plet. To make the
comparisons meaningful, all these three algorithms use the same
minutiae extraction, the same minutiae similarity and the same
matching score calculation method.
5.2.1. Performance comparison on FVC2004 DB1

All three algorithms were conducted on FVC2004 DB1. The
receiver operating characteristic (ROC) curves are plotted in
Fig. 9 and their EER, FMR100, FMR1000 and ZeroFMR are
reported in Table 2. From the results, we can easily obtain that
Algorithm ACO performs the best, whereas Algorithm CBFS is
the worst. Algorithm CBFS utilizes a dynamic programming
approach based on the string alignment algorithm to match all
nd ACO. (a) Minutiae correspondences obtained by Rigid and (b) minutiae

ces while blue squares denote false minutiae correspondences (For interpretation

n of this article.).

Fig. 9. ROC curve of different algorithms on FVC2004 DB1.
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neighbors simultaneously. Its objective is to minimize the error
of position and direction of the matched minutiae pairs. There-
fore, when large distortion exists, minutiae may be wrongly
paired. Since the local features are very powerful in discrimi-
nating minutiae and Algorithm CBFS does not take this into
account during the matching process, the EER, FMR100, and
FMR1000 of Algorithm CBFS are even higher than in Algorithm
Rigid. Algorithm Rigid make use of minutiae similarity to
Fig. 10. ROC curves of Algorithm Rigid and Algorithm ACO over FINGERPASS database:

AES2501 and (f) UPEK vs. AES2501.
establish minutiae correspondences, however, rigid transfor-
mation (rotation and translation) is difficult to register large-
distorted fingerprints (as shown in Fig. 1). Since no explicit
alignment is required during the entire matching process and
the local matching process is propagated to its neighbors by a
pseudo-random proportional rule, ACO is able to find the best
minutiae correspondences to maximize the objective function
(16). Fig. 7 gives the minutiae correspondences of the two
(a) URU4000B; (b) UPEK; (c) AES2501; (d) URU4000B vs. UPEK; (e) URU4000B vs.
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fingerprints (Fig. 1) obtained by Algorithm ACO. Fig. 8 compares
two matching results of Algorithm Rigid and Algorithm ACO,
which confirms that Algorithm ACO is capable of matching
minutiae between large-distorted fingerprints.
Table 3
The performance of regular matching based over three FINGERPASS databases.

Method EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)

URU Rigid 0.017 0 0.006 0.082

ACO 0.015 0.002 0.008 0.067

UPEK Rigid 0.117 0.048 0.120 1.322

ACO 0.093 0.034 0.091 1.031

AES Rigid 0.058 0.008 0.057 0.396

ACO 0.057 0.008 0.038 0.339

Fig. 11. Resized skeleton images of Fig. 2 using the common resolution method.

(a) skeleton image of Fig. 2(a); (b) resized skeleton image of 2(b); and (c) rigid

registration of (a) and (b).

Table 4
The performance of cross-matching based over three FINGERPASS databases.

Method EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)

URU vs. UPEK Rigid 0.357 0.204 0.595 2.929

ACO 0.314 0.190 0.490 2.369

URU vs. AES Rigid 1.666 2.162 5.050 12.231

ACO 1.226 1.357 3.232 10.579

UPEK vs. AES Rigid 1.783 2.408 5.451 13.584

ACO 1.455 1.733 4.119 12.676

Fig. 12. Comparison of minutiae correspondences obtained by Algorithm Rigid and Algo

by Algorithm Rigid and (b) minutiae correspondences obtained by Algorithm ACO. Red

minutiae correspondences. (For interpretation of the references to color in this figure
Finally, we also compare our results with that of the algo-
rithms called P101 and P097 in FVC2004 on DB1 in Table 2. P101
and P097 obtained second and third place, respectively, when
ranked by EER. The detailed performances of FVC2004 algorithms
can be seen from the web site [13]. According to the ranking rule
in terms of EER in FVC2004, our algorithm rank in third place.

5.2.2. Performance comparison over FINGERPASS database

Three sets of regular matching (URU, UPEK and AES) and three
sets of cross-matching experiments (URU vs. UPEK, URU vs. AES and
UPE vs. AES) are conducted over the FINGERPASS database to
evaluate the proposed algorithm. In each set of experiments, we
compare Algorithm ACO and Algorithm Rigid. Fig. 10 compares ROC
curves for three sets of regular matching and three sets of cross-
matching. Table 3 and Table 4 summarize the matching performance
for regular matching and cross-matching, respectively. Based on the
results, the following conclusions can be drawn out: The quality of
the fingerprints in the FINGERPASS database is adequate and the
local features are discriminating, the EERs of Algorithm Rigid during
regular matching conducted over URU, UPEK and AES are 0.017%,
0.117% and 0.058%, respectively. However, even though the perfor-
mance over regular matching experimental sets is very good, the
performance over cross-matching experimental sets is barely satis-
factory. The EERs of Algorithm Rigid on URU vs. UPEK, URU vs. AES
and UPEK vs. AES are 0.357%, 1.666% and 1.783%, respectively. The
comparisons show that when fingerprints are captured from sensors
of different types, the matching performance degrades, and it is
worse than any one of the involved sensors. Specially, when two
sensors are of different acquisition modes (such as URU and AES), the
performance drastically deteriorates. The same conclusions can be
obtained by analyzing the results of algorithm ACO.

Over URU vs. UPEK, URU vs. AES and UPEK vs. AES, the EERs of
Algorithm ACO and Algorithm Rigid are 0.314% vs. 0.357%, 1.222%
vs. 1.666% and 1.455% vs. 1.783%, respectively. Since URU and
UPEK are both press mode sensors, rigid transformation is able to
register fingerprints from these two sensors. Algorithm Rigid
has good performance on this set, and Algorithm ACO has only
0.043% improvement. Algorithm ACO performs much better than
Algorithm Rigid over the other two cross-matching experimental
sets. The improvements are both larger than 0.32%.

Since fingerprint images of the sweep sensor are reconstructed
from consecutive frames, distortion is introduced by finger move-
ment during sweeping. Fig. 11 shows the resized skeleton finger-
print images of Fig. 2 based on the common resolution method.
Compared with Fig. 11(b), the upper part of Fig. 11(a) is obviously
compressed. When these two fingerprints are compared, rigid
transformation is difficult to establish all the minutiae pairs.
Fig. 12(a) and (b) shows the matching results of Algorithm Rigid
and Algorithm ACO, respectively. The comparison demonstrates that
rithm ACO from cross-matching database. (a) Minutiae correspondences obtained

circles denote genuine minutiae correspondences while blue squares denote false

legend, the reader is referred to the web version of this article.)



Fig. 13. Comparison of minutiae correspondences obtained by Algorithm Rigid and Algorithm ACO over fingerprints of low quality. (a) Minutiae correspondences obtained

by Algorithm Rigid and (b) minutiae correspondences obtained by Algorithm ACO.

K. Cao et al. / Pattern Recognition 45 (2012) 151–161160
algorithm ACO is effective to find correct minutiae correspondences
even when different distortion patterns are involved. When one of
the compared fingerprints is of low quality and lots of spurious
minutiae exist, Algorithm ACO may obtain less minutiae correspon-
dences because of minutiae compatibility checking, which leads
smaller matching score. Fig. 13 illustrates this case. That is the
reason that FMR100 of Algorithm ACO is higher than Algorithm
Rigid over URU (Table 3).
6. Conclusion and future work

Matching of fingerprint images with a large distortion or
fingerprint images originating from two different sensors greatly
challenges the traditional fingerprint matching algorithm. By
representing the minutiae set as a point pattern, we propose a
novel ant colony optimization algorithm, which is based on local
descriptors and neighbor propagation, to find the minutiae
correspondences. Experiments are conducted on FVC2004 DB1
and FINGERPASS database which are constructed by our lab.
Results demonstrate that Algorithm ACO can effectively find the
correct minutiae correspondences.

All experiments are conducted on the same PC with Intel
Pentium 4 processor 3.4 GHz under Windows XP professional
operating system. On FVC2004 DB1, URU, UPEK, AES, URU vs.
UPEK, URU vs. AES and UPEK vs. AES, the average matching times
of algorithm ACO and algorithm Rigid are 25.6 vs. 17.7 ms, 71 vs.
34.8 ms, 21.9 vs. 8 ms, 39.0 vs. 17.3 ms, 40.4 vs. 17.2 ms, 59.3 vs.
24.5 ms and 32.1 vs. 12.1 ms, respectively. The matching time of
Algorithm ACO is nearly 2.3 times that of Algorithm Rigid. Most of
the matching time of Algorithm Rigid is spent on minutiae
similarity computation. In the future, we plan to improve the
algorithm along the following two directions. The first direction is
to speed up the algorithm by utilizing the global feature and ridge
pattern. Since the proposed algorithm is able to find correct
minutiae correspondences in large-distorted fingerprint images,
the second direction is trying to use a non-linear distortion model,
such as thin-plate spline or quadratic model, to account for the
distortion between fingerprint images.
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